Wolfspeed.

CAS350M12BM3

1200 V, 350 A, Silicon Carbide, Half-Bridge Module

V_{DS}	1200 V
I_{DS}	350 A

Technical Features

- Industry Standard 62 mm Footprint
- Ultra Low Loss, High-Frequency Operation
- Zero Reverse Recovery from Diodes
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Copper Baseplate and Aluminum Nitride Insulator

Applications

- Induction Heating
- Motor Drives
- Renewables
- Railway Auxiliary \& Traction
- EV Fast Charging
- UPS and SMPS

System Benefits

- 62 mm Form Factor Enables System Retrofit
- Increased System Efficiency, due to Low Switching \& Conduction Losses of SiC

Key Parameters

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Note
Drain-Source Voltage	$V_{\text {DS }}$			1200	V	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	
Gate-Source Voltage, Maximum Value	$\mathrm{V}_{\text {GS(max) }}$	-8		+19		Transient	Note 1 Fig. 33
Gate-Source Voltage, Recommended	$\mathrm{V}_{\text {GS(op) }}$		-4/+15			Static	
DC Continuous Drain Current	ID		417		A	$V_{G S}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{VJ}} \leq 175^{\circ} \mathrm{C}$	Notes 2, 3 Fig. 21
			318			$V_{\text {GS }}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=90^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{VJ}} \leq 175^{\circ} \mathrm{C}$	
DC Source-Drain Current (Schottky Diode)	$\mathrm{ISD}_{\text {D }}$ (S)		440			$\mathrm{V}_{\text {GS }}=-4 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{VJ}} \leq 175^{\circ} \mathrm{C}$	
Pulsed Drain-Source Current	I_{DM}		700			$\mathrm{t}_{\text {pmax }}$ limited by $\mathrm{T}_{\mathrm{V} \text { max }}$ $V_{G S}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	
Power Dissipation	PD		1293		W	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{v}} \leq 175^{\circ} \mathrm{C}$	Note 4 Fig. 21
Virtual Junction Temperature	$\mathrm{T}_{\mathrm{VJ}(\text { (op) }}$	-40		150	${ }^{\circ} \mathrm{C}$	Operation	
				175		Intermittent with Reduced Life	

Note (1): Recommended turn-on gate voltage is 15 V with $\pm 5 \%$ regulation tolerance
Note (2): Current limit at $T_{C}=90^{\circ} \mathrm{C}$ calculated by $I_{D(\text { max })}=\sqrt{ }\left(P_{D} / R_{D S(t y p)}\left(T_{V J(\text { max })}, I_{D(\text { max })}\right)\right)$
Note (3): Verified by design
Note (4): $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{vJ}}-\mathrm{T}_{\mathrm{C}}\right) / \mathrm{R}_{\mathrm{TH}(\mathrm{Jc}, \mathrm{typ})}$

MOSFET Characteristics (Per Position) ($\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Note
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ SSS	1200			V	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=-40^{\circ} \mathrm{C}$	
Gate Threshold Voltage	$\mathrm{V}_{\text {GS(th) }}$	1.8	2.5	3.6		$\mathrm{V}_{\text {DS }}=\mathrm{V}_{G S}, \mathrm{I}_{\mathrm{D}}=85 \mathrm{~mA}$	
			2.0			$V_{D S}=V_{G S}, \mathrm{I}_{\mathrm{D}}=85 \mathrm{~mA}, \mathrm{~T}_{V J}=175^{\circ} \mathrm{C}$	
Zero Gate Voltage Drain Current	loss		8.2	1128	$\mu \mathrm{A}$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=1200 \mathrm{~V}$	
Gate-Source Leakage Current	$I_{\text {GSS }}$		40	400	nA	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	
Drain-Source On-State Resistance (Devices Only)	$\mathrm{R}_{\text {DS(on) }}$		4.0	5.2	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}$	Fig. 2 Fig. 3
			6.5			$V_{G S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}, \mathrm{~T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C}$	
Transconductance	gis		306		S	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}$	Fig. 4
			292			$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}, \mathrm{~T}_{V J}=150^{\circ} \mathrm{C}$	
$\begin{aligned} & \text { Turn-On Switching Energy, } \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{E}_{\text {on }}$		$\begin{aligned} & 5.0 \\ & 4.5 \\ & 4.4 \\ & \hline \end{aligned}$		mJ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=600 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}, \\ & \mathrm{~V}_{G S}=-4 \mathrm{~V} / 15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}(\mathrm{OFF})}=0.5 \Omega, \mathrm{R}_{\mathrm{GON})}=0.5 \Omega, \\ & \mathrm{~L}=25 \mu \mathrm{H} \end{aligned}$	Fig. 11 Fig. 13
$\begin{aligned} & \text { Turn-Off Switching Energy, } \mathrm{T}_{v J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} J}=150^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{E}_{\text {OFF }}$		$\begin{aligned} & 4.8 \\ & 4.8 \\ & 4.9 \end{aligned}$				
Internal Gate Resistance	$\mathrm{R}_{6 \text { (int) }}$		2.53		Ω	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{AC}}=25 \mathrm{mV}$	
Input Capacitance	$\mathrm{C}_{\text {iss }}$		25.7		nF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=800 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AC}}=25 \mathrm{mV}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	Fig. 9
Output Capacitance	Coss		1.8				
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		44.5		pF		
Gate to Source Charge	Q ${ }_{\text {gs }}$		268		nC	$\begin{aligned} & V_{\text {DS }}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4 \mathrm{~V} / 15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}, \\ & \text { Per IEC60747-8-4 pg } 21 \end{aligned}$	
Gate to Drain Charge	$\mathrm{Q}_{\text {GD }}$		244				
Total Gate Charge	QG		844				
FET Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {th Jc }}$		0.116		${ }^{\circ} \mathrm{C} / \mathrm{W}$		Fig. 17

Diode Characteristics (Per Position) ($\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Note
Diode Forward Voltage	$V_{\text {F }}$		2.0		V	$\mathrm{V}_{G S}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=350 \mathrm{~A}, \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	Fig. 7
			2.5			$\mathrm{V}_{G S}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=350 \mathrm{~A}, \mathrm{~T}_{V J}=150^{\circ} \mathrm{C}$	
Reverse Recovery Time	t_{RR}		24.5		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=350 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=13.0 \mathrm{~A} / \mathrm{ns}, \mathrm{~T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} \end{aligned}$	Fig. 32
Reverse Recovery Charge	$\mathrm{Q}_{\text {RR }}$		5.0		$\mu \mathrm{C}$		
Peak Reverse Recovery Current	$I_{\text {RRM }}$		341		A		
$\begin{aligned} & \text { Reverse Recovery Energy, } \mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=150^{\circ} \mathrm{C} \end{aligned}$	$E_{\text {RR }}$		$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.0 \end{aligned}$		mJ	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=350 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4 \mathrm{~V} / 15 \mathrm{~V}, \mathrm{R}_{G(\text { ext })}=0.5 \Omega, \\ & \mathrm{~L}=25 \mu \mathrm{H} \end{aligned}$	Fig. 14 Note 5
Diode Thermal Resistance, JCT. to Case	$\mathrm{R}_{\text {th Jc }}$		0.112		${ }^{\circ} \mathrm{C} / \mathrm{W}$		Fig. 18

Note (5): SiC Schottky diodes do not have reverse recovery energy but still contribute capacitive energy.

Module Physical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Package Resistance, M1 (High-Side)	R_{3-1}		1.31		$\mathrm{m} \Omega$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {SD }}=350 \mathrm{~A}$, Note 6
			1.84			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\text {SD }}=350 \mathrm{~A}$, Note 6
Package Resistance, M2 (Low-Side)	R_{1-2}		1.26			$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {SD }}=350 \mathrm{~A}$, Note 6
			1.77			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\text {SD }}=350 \mathrm{~A}$, Note 6
Stray Inductance	$\mathrm{L}_{\text {stray }}$		11.1		nH	Between DC- and DC+, f $=10 \mathrm{MHz}$
Case Temperature	T_{c}	-40		125	${ }^{\circ} \mathrm{C}$	
Mounting Torque	Ms	4	5	5.5	N-m	Baseplate, M6-1.0 Bolts
		4	5	5.5		Power Terminals, M6-1.0 Bolts
Weight	W		300		g	
Case Isolation Voltage	$\mathrm{V}_{\text {isol }}$	5			kV	AC, $50 \mathrm{~Hz}, 1$ minute
Clearance Distance		9			mm	Terminal to Terminal
		30				Terminal to Baseplate
Creepage Distance		30				Terminal to Terminal
		40				Terminal to Baseplate

Note (6):Total Effective Resistance (Per Switch Position) = MOSFET R RS(on) + Switch Position Package Resistance

Typical Performance

Figure 1. Output Characteristics for Various Junction Temperatures

Figure 3. Normalized On-State Resistance vs. Junction Temperature

Figure 5. $3^{\text {rd }}$ Quadrant Characteristic vs. Junction Temperatures at $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$

Figure 2. Normalized On-State Resistance vs. Drain Current for Various Junction Temperatures

Figure 4. Transfer Characteristic for Various Junction Temperatures

Figure 6. $3^{\text {rd }}$ Quadrant Characteristic vs. Junction Temperatures at $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ (Diode)

Typical Performance

Figure 7. $3^{\text {rd }}$ Quadrant Characteristic vs. Junction Temperatures at $\mathrm{V}=-4 \mathrm{~V}$ (Diode)

Figure 9. Typical Capacitances vs. Drain to Source Voltage (0-1200 V)

Figure 11. Switching Energy vs. Drain Current ($\mathrm{V}_{\mathrm{DS}}=600 \mathrm{~V}$)

Figure 8. Typical Capacitances vs. Drain to Source Voltage (0-200 V)

Figure 10. Threshold Voltage vs. Junction Temperature

Figure 12. Switching Energy vs. Drain Current ($\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}$)

Typical Performance

Figure 13. MOSFET Switching Energy vs. Junction Temperature

Figure 15. MOSFET Switching Energy vs. External Gate Resistance

Figure 17. MOSFET Junction to Case Transient Thermal Impedance, $\mathrm{Z}_{\mathrm{th}, \mathrm{jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$

Figure 14. Reverse Recovery Energy vs. Junction Temperature

Figure 16. Reverse Recovery Energy vs. External Gate Resistance

Figure 18. Diode Junction to Case Transient Thermal Impedance, $\mathrm{Z}_{\mathrm{th}, \mathrm{jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$

Typical Performance

Figure 19. Switching Safe Operating Area

Figure 21. Continuous Drain Current Derating vs. Case Temperature

Figure 23. Typical Output Current Capability vs. Switching Frequency (Inverter Application)

Figure 20. Forward Bias Safe Operating Area (FBSOA)

Figure 22. Maximum Power Dissipation Derating vs. Case Temperature

Timing Characteristics

Figure 24. Timing vs. Source Current

Figure 26. Timing vs. Junction Temperature

Figure 28. Timing vs. External Gate Resistance

Figure 25. dv/dt and di/dt vs. Source Current

Figure 27. dv/dt and di/dt vs. Junction Temperature

Figure 29. dv/dt and di/dt vs. External Gate Resistance

Definitions

Figure 30. Turn-Off Transient Definitions

Figure 32. Reverse Recovery Definitions

Figure 31. Turn-On Transient Definitions

Figure 33. V_{GS} Transient Definitions

Schematic and Pin Out

Package Dimension (mm)

DIMENSION TABLE		
SYMBOL	DIMENSION	TOLERANCE
A1	103.5	± 0.30
A2	60.44	± 0.30
A3	98.25	± 0.30
A4	54.22	± 0.30
A5	5.25	± 0.30
A6	6.22	± 0.30
A7	3	± 0.30
B1	23.75	± 0.40
B2	51.75	± 0.40
B3	79.75	± 0.40
B4	(28)	$R E F$.
B5	(17.43)	$R E F$.
B6	30.23	± 0.40
B7	$144)$	REF.
B8	30.03	± 0.40
C1	16.73	± 0.40
C2	22.73	± 0.40
C3	37.73	± 0.40
C4	43.73	± 0.40
C5	2.8	± 0.40
C6	30.8	± 0.50
C7	99.75	± 0.40
C8	(6)	$R E F$.
C9	(15)	$R E F$.
D1	22.3	± 0.30
D2	26.3	± 0.30
D3	104.95	± 0.30
D4	1.45	± 0.40
D5	(24)	$R E F$.
D6	(22)	$R E F$.

Supporting Links \& Tools

Evaluation Tools \& Support

- PLECS Models
- LTSpice Models
- KIT-CRD-CIL12N-BM: Dynamic Performance Evaluation Board for the BM2 and BM3 Module
- SpeedFit 2.0 Design Simulator ${ }^{\text {TM }}$
- Technical Support Forum

Dual-Channel Gate Driver Board

- CGD1200HB2P-BM3: Dual Channel Differential Isolated Half Bridge Gate Driver Board
- CGD12HB00D: Differential Transceiver Daughter Board Companion Tool for Differential Gate Drivers

Application Notes

- CPWR-AN35: 62 mm Module Thermal Interface Material Application Note

Notes \& Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive
Durham, NC 27703 USA
Tel: +1.919.313.5300
www.wolfspeed.com/power

[^0]
[^0]: © 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed ${ }^{\circledR}$ and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

 The information in this document is subject to change without notice.

