

1200 V, 120 A All-Silicon Carbide High Performance, Switching Optimized, Half-Bridge Module

$\mathbf{V}_{\mathtt{DS}}$	1200 V
I_{DS}	120 A

Technical Features

- Industry Standard 62 mm Footprint
- Ultra-Low Loss, High-Frequency Operation
- Zero Reverse Recovery from Diodes
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Copper Baseplate and Aluminum Nitride Insulator

Applications

- Railway & Traction
- Solar & Renewable Energy
- EV Charging
- Industrial Automation & Testing

System Benefits

- Fast Time-to-Market with Minimal Development Required for Transition from 62 mm IGBT Packages
- Increased System Efficiency, due to Low Switching & Conduction Losses of SiC

Key Parameters

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Note
Drain-Source Voltage	V _{DS}			1200		T _c = 25 °C	
Gate-Source Voltage, Maximum Value	V _{GS(max)}	-10		+25	V	Transient	Note 1
Gate-Source Voltage, Recommended	$V_{GS(op)}$		-5/+20			Static	Fig. 33
DC Continuous Drain Current			200		A	$V_{GS} = 20 \text{ V}, T_C = 25 \text{ °C}, T_{VJ} \le 150 \text{ °C}$	Notes 2, 3 Fig. 21
	I _D	I _D	144			$V_{GS} = 20 \text{ V}, T_C = 90 \text{ °C}, T_{VJ} \le 150 \text{ °C}$	
DC Source-Drain Current (Schottky Diode)	I _{SD(SD)}		460			$V_{GS} = -5 \text{ V}, T_C = 25 \text{ °C}, T_{VJ} \le 150 \text{ °C}$	
Pulsed Drain-Source Current	I _{DM}		480			t_{Pmax} limited by T_{VJmax} $V_{GS} = 20 \text{ V}, T_C = 25 ^{\circ}\text{C}$	
Power Dissipation	P _D		1000		W	$T_{\rm C} = 25 {\rm ^{\circ}C}, T_{\rm VJ} \leq 150 {\rm ^{\circ}C}$	Note 4 Fig. 21
Virtual Junction Temperature	T _{VJ(op)}	-40		150	°C	Operation	

Note (1): Recommended turn-on gate voltage is 20 V with ±5 % regulation tolerance

Note (2): Current limit at $T_C = 90$ °C calculated by $I_{D(max)} = \sqrt{(P_D/R_{DS(typ)}(T_{VJ(max)},I_{D(max)}))}$

Note (3): Verified by design

Note (4): $P_D = (T_{VJ} - T_C)/R_{TH(JC,typ)}$

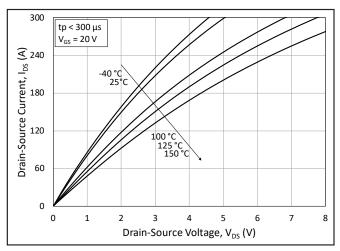
MOSFET Characteristics (Per Position) (T_{VJ} = 25 °C Unless Otherwise Specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Note
Drain-Source Breakdown Voltage	V _{(BR)DSS}	1200			.,,	V _{GS} = 0 V, T _{VJ} = -40 °C	
Gate Threshold Voltage	V _{GS(th)}	1.8	2.6		V	$V_{DS} = V_{GS}$, $I_D = 6$ mA	
Zero Gate Voltage Drain Current	I _{DSS}		450	3000		V _{GS} = 0 V, V _{DS} = 1200 V	
Gate-Source Leakage Current	I _{GSS}			1.5	μΑ	V _{GS} = 20 V, V _{DS} = 0 V	
Drain-Source On-State Resistance (Devices			13.0	16.0	mΩ -	V _{GS} = 20 V, I _D = 120 A	Fig. 2 Fig. 3
Only)	R _{DS(on)}		23.0			V _{GS} = 20 V, I _D = 120 A, T _{VJ} = 150 °C	
T	_		57.4		_	V _{DS} = 20 V, I _{DS} = 120 A	Fig. 4
Transconductance	g_{fs}		54.4		S	V _{DS} = 20 V, I _{DS} = 120 A, T _{VJ} = 150 °C	
Turn-On Switching Energy, T_{VJ} = 25 °C T_{VJ} = 125 °C T_{VJ} = 150 °C	E _{on}		1.39 1.24 1.19			V _{DS} = 600 V, I _D = 120 A,	Fig. 11 Fig. 13
Turn-Off Switching Energy, T_{VJ} = 25 °C T_{VJ} = 125 °C T_{VJ} = 150 °C	E _{OFF}		0.86 0.84 0.85		mJ	$ \begin{array}{l} V_{GS} = -5 \ V/+20 \ V, \\ R_{G(ext)} = 2.5 \ \Omega, \\ L = 22.5 \ \mu H \end{array} $	
Internal Gate Resistance	R _{G(int)}		1.8		Ω	V _{AC} = 25 mV, f = 100 kHz	
Input Capacitance	C _{iss}		6.47		_	V _{GS} = 0 V, V _{DS} = 800 V, V _{AC} = 25 mV, f = 200 kHz	
Output Capacitance	C _{oss}		0.98		nF		Fig. 9
Reverse Transfer Capacitance	C _{rss}		43.8		pF		
Gate to Source Charge	Q_{GS}		97			V _{DS} = 800 V, V _{GS} = -5 V/+20 V I _D = 120 A	
Gate to Drain Charge	Q_{GD}		118		nC		
Total Gate Charge	Q _G		378			Per IEC60747-8-4 pg 21	
FET Thermal Resistance, Junction to Case	R _{th JC}		0.125	0.135	°C/W		Fig. 17

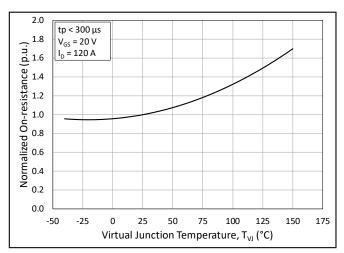
Diode Characteristics (Per Position) (T_{VJ} = 25 °C Unless Otherwise Specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Note
Diode Forward Voltage	V		1.53		V	$V_{GS} = -5 \text{ V}, I_F = 120 \text{ A}, T_{VJ} = 25 \text{ °C}$	Fig. 7
	V_{F}		1.92			$V_{GS} = -5 \text{ V}, I_F = 120 \text{ A}, T_{VJ} = 150 \text{ °C}$	
Reverse Recovery Time	t _{RR}		21		ns		
Reverse Recovery Charge	Q _{RR}		2.2		μС	$V_{GS} = -5 \text{ V}, I_{SD} = 120 \text{ A}, V_R = 600 \text{ V}$ $di_F/dt = 12.5 \text{ A/ns}, T_J = 150 \text{ °C}$	Fig. 32
Peak Reverse Recovery Current	I _{RRM}		173		Α		
Diode Energy T_{VJ} = 25 °C T_{VJ} = 125 °C T_{VJ} = 150 °C	E _{rr}		0.75 0.86 0.89		mJ	$V_{DS} = 600 \text{ V}, I_D = 120 \text{ A}, \ V_{GS} = -5 \text{ V}/+20 \text{ V}, R_{G(ext)} = 2.5 \Omega, \ L = 22.5 \ \mu\text{H}$	Fig. 14 Note 5
Diode Thermal Resistance, Junction to Case	R _{th JC}		0.108	0.115	°C/W		Fig. 18

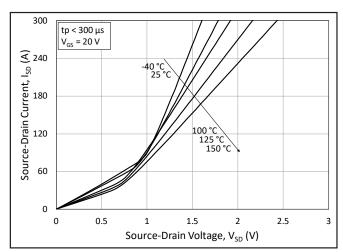
Note (5): SiC Schottky diodes do not have reverse recovery energy but still contribute capacitive energy

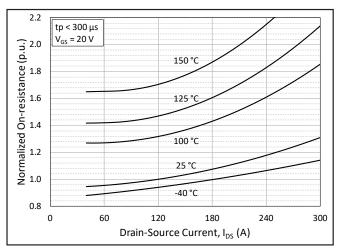

Module Physical Characteristics

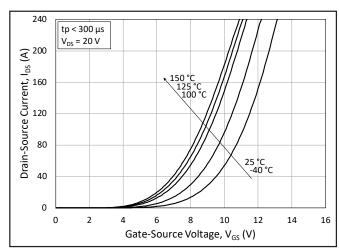
Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
Package Resistance, M1	R ₁₋₂		0.60		0	T _C = 125 °C, Note: 6
Package Resistance, M2	R ₂₋₃		0.51		μΩ	T _c = 125 °C, Note: 6
Stray Inductance	L _{Stray}		12.9		nH	Between Terminals 1 and 3
Case Temperature	T _c	-40		125	°C	
Weight	W		290		g	
Mounting Torque	Ms	4	5	5.5	N-m	Baseplate, M6-1.0 Bolts
		4	5	5.5		Power Terminals, M6-1.0 Bolts
Case Isolation Voltage	V _{isol}	5			kV	AC, 50 Hz, 1 min
Clearance Distance		9				Terminal to Terminal
		30				Terminal to Baseplate
Creepage Distance		30			mm	Terminal to Terminal
		40				Terminal to Baseplate


Note (6): Total Effective Resistance (Per Switch Position) = MOSFET R_{DS(on)} + Switch Position Package Resistance

2


Typical Performance


Figure 1. Output Characteristics for Various Junction Temperatures


Figure 3. Normalized On-State Resistance vs. Junction Temperature

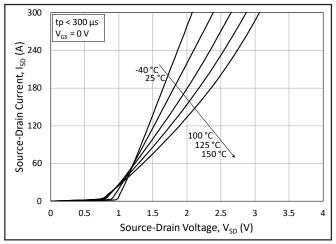

Figure 5. 3^{rd} Quadrant Characteristic vs. Junction Temperatures at $V_{GS} = 20 \text{ V}$ (Note: 2)

Figure 2. Normalized On-State Resistance vs. Drain Current for Various Junction Temperatures

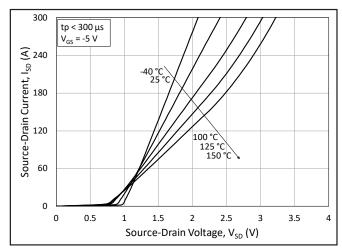


Figure 4. Transfer Characteristic for Various Junction Temperatures

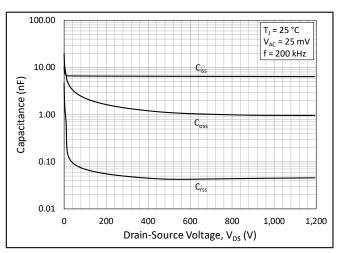
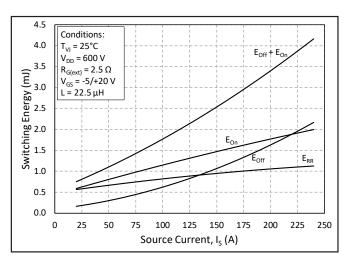


Figure 6. 3^{rd} Quadrant Characteristic vs. Junction Temperatures at $V_{GS} = 0$ V (Diode) (Note: 2)


Typical Performance

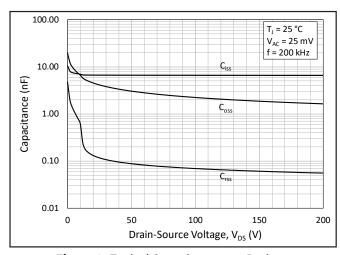

Figure 7. 3rd Quadrant Characteristic vs. Junction Temperatures at V_{GS} = -5 V (Diode) (Note: 2)

Figure 9. Typical Capacitances vs. Drain to Source Voltage (0 - 1200 V)

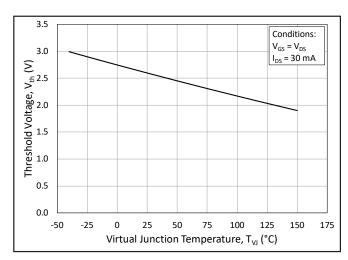


Figure 11. Switching Energy vs. Drain Current $(V_{DS} = 600 \text{ V})$

5

Figure 8. Typical Capacitances vs. Drain to Source Voltage (0 - 200 V)

Figure 10. Threshold Voltage vs. Junction Temperature

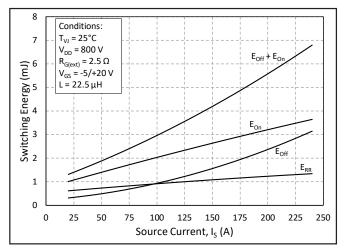
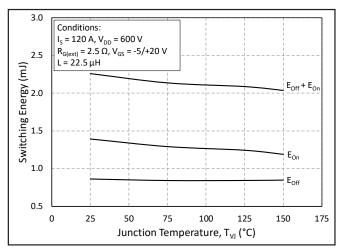
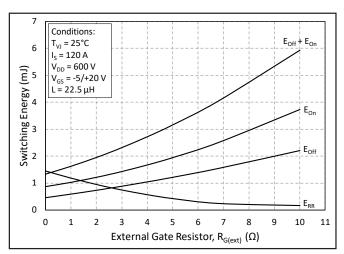
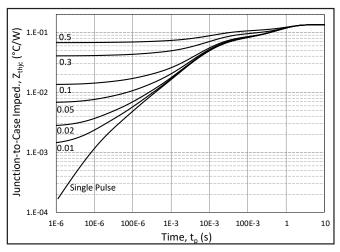
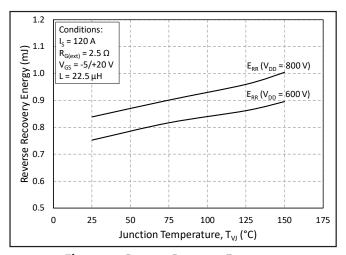
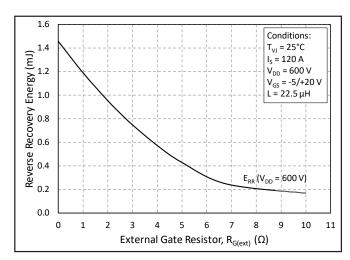




Figure 12. Switching Energy vs. Drain Current $(V_{DS} = 800 \text{ V})$


Typical Performance


Figure 13. MOSFET Switching Energy vs. Junction Temperature


Figure 15. MOSFET Switching Energy vs. External Gate Resistance

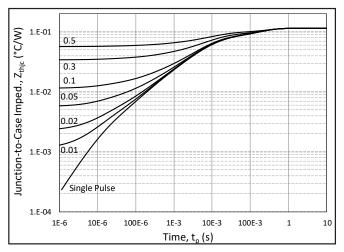
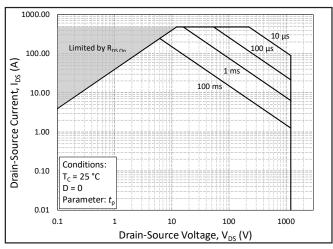
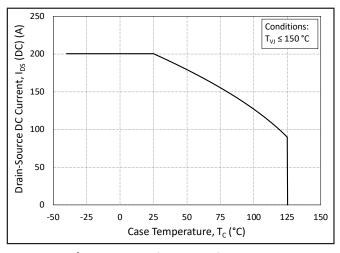
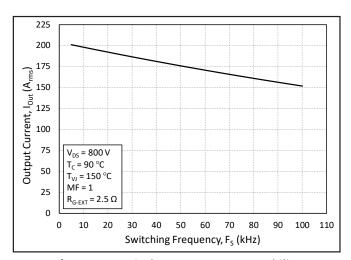
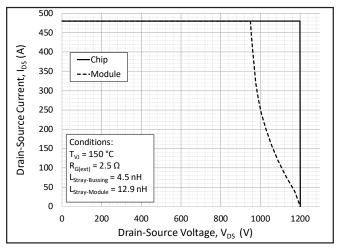

Figure 17. MOSFET Junction to Case Transient Thermal Impedance, Z_{th JC} (°C/W)

Figure 14. Reverse Recovery Energy vs. Junction Temperature (Note: 2)


Figure 16. Reserve Recovery Energy vs. External Gate Resistance (Note: 2)


Figure 18. Diode Junction to Case Transient Thermal Impedance, $Z_{th JC}$ (°C/W)


Typical Performance


Figure 19. Forward Bias Safe Operating Area (FBSOA)

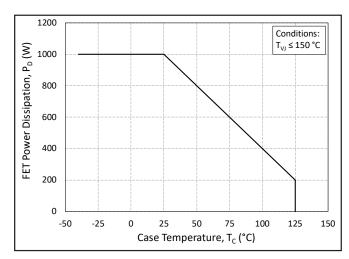

Figure 21. Continuous Drain Current Derating vs. Case Temperature

Figure 23. Typical Output Current Capability vs. Switching Frequency (Inverter Application)

Figure 20. Reverse Bias Safe Operating Area (RBSOA)

Figure 22. Maximum Power Dissipation Derating vs. Case Temperature

Timing Characteristics

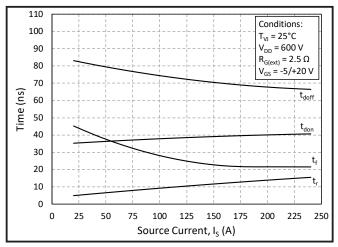
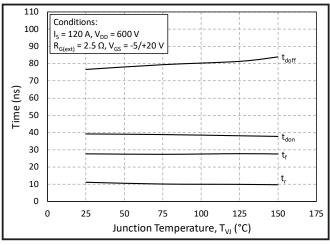



Figure 24. Timing vs. Source Current

Figure 26. Timing vs. Junction Temperature

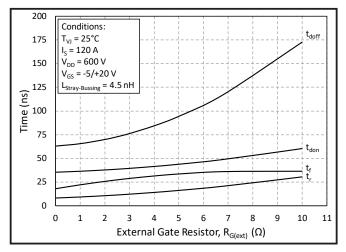


Figure 28. Timing vs. External Gate Resistance

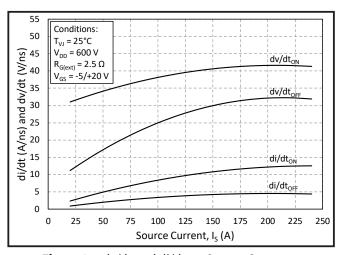


Figure 25. dv/dt and di/dt vs. Source Current

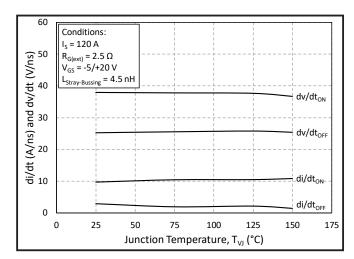
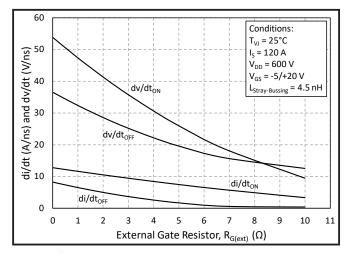



Figure 27. dv/dt and di/dt vs. Source Current

Figure 29. dv/dt and di/dt vs. External Gate Resistance

9

Definitions

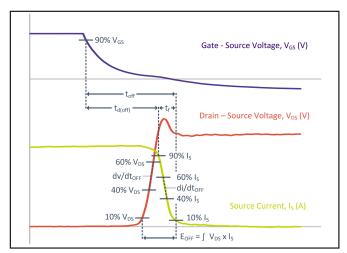


Figure 30. Turn-Off Transient Definitions

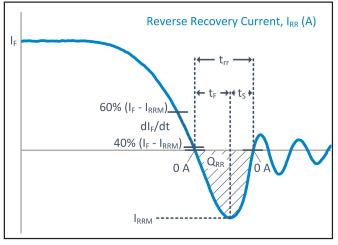


Figure 32. Reverse Recovery Definitions (Note 2)

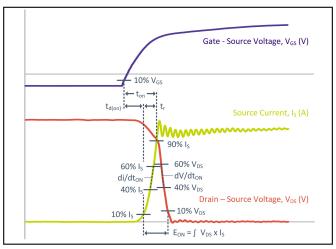
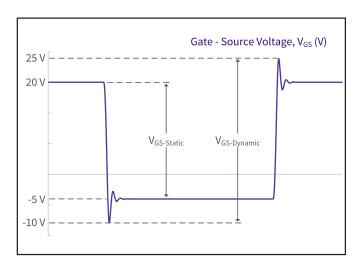
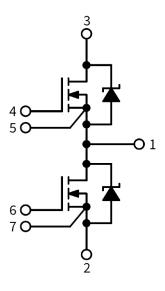
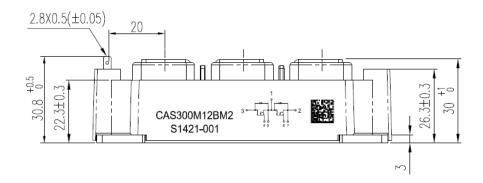
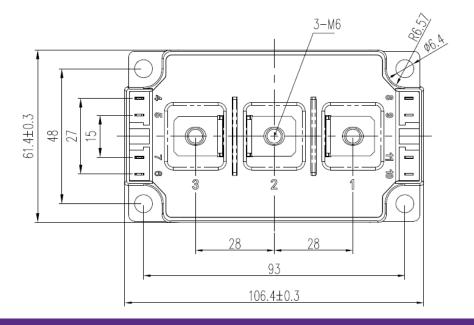


Figure 31. Turn-On Transient Definitions


Figure 33. V_{GS} Transient Definitions

Schematic and Pin Out

Package Dimensions (mm)

Supporting Links & Tools

- CGD1200HB2P-BM2 Evaluation Gate Driver
- CGD12HB00D: Differential Transceiver Board
- KIT-CRD-CIL12N-BM: Dynamic Performance Evaluation Board for the BM2 and BM3 Module

Notes & Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power

© 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.