

3rd Generation 650 V, 16A Silicon Carbide Schottky

Description

With the performance advantages of a Silicon Carbide (SiC) Schottky Barrier diode, power electronics systems can expect to meet higher efficiency standards than Si-based solutions, while also reaching higher frequencies and power densities. SiC diodes can be easily paralleled to meet various application demands, without concern of thermal runaway. In combination with the reduced cooling requirements and improved thermal performance of SiC products, SiC diodes are able to provide lower overall system costs in a variety of diverse applications.

Features

- Low Forward Voltage (V_F) Drop with Positive Temperature Coefficient
- Zero Reverse Recovery Current / Forward Recovery Voltage
- Temperature-Independent Switching Behavior

Applications

- Industrial Switched Mode Power Supplies
- Uninterruptible & AUX Power Supplies
- Boost for PFC & DC-DC Stages
- Solar Inverters

Maximum Ratings (T_c = 25°C Unless Otherwise Specified)

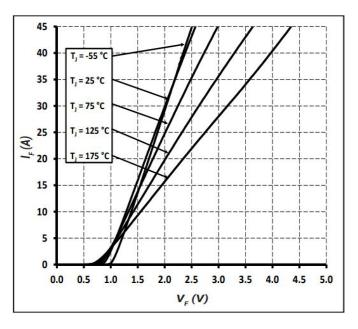
Parameter	Symbol	Value	Unit	Test Conditions	Notes	
Repetitive Peak Reverse Voltage	V _{RRM}	650	.,			
DC Blocking Voltage	V _{DC}	650	V			
		39		T _J = 25 °C		
Continuous Forward Current	I _F	18		T _J = 135 °C	Fig. 3	
		16		T _J = 142 °C		
Repetitive Peak Forward Surge		66		T _c = 25 °C, t _p = 10 ms, Half Sine Wave		
Current	FRM	46	Α	$T_c = 110 ^{\circ}\text{C}, t_p = 10 \text{ms}, \text{Half Sine Wave}$		
Non-Repetitive Forward Surge		162		$T_c = 25 ^{\circ}\text{C}, t_p = 10 \text{ms}, \text{Half Sine Wave}$	F: 0	
Current	FSM 150			$T_c = 110 ^{\circ}\text{C,t}_p = 10 \text{ms, Half Sine Wave}$	Fig. 8	
Non-Repetitive Peak Forward		1400		$T_{c} = 25 ^{\circ}\text{C}, t_{p} = 10 \mu\text{s}, \text{Pulse}$		
Surge Current	F,Max	1200		$T_{c} = 110^{\circ}C, t_{p} = 10 \mu s, Pulse$		
5 6 6		150	14/	T _J = 25 °C	F: 4	
Power Dissipation	P _{tot}	65	W	T _J = 110 °C	Fig. 4	
*21 1 10 1 1	6.3 11	131	• • • • • • • • • • • • • • • • • • • •	$T_c = 25 {}^{\circ}\text{C}, t_p = 10 {}^{\circ}\text{ms}$		
i²t value (Per Leg)	∫i²dt	112.5	A ² s	$T_{c} = 110 {}^{\circ}\text{C}, t_{p} = 10 {}^{\text{ms}}$		

Electrical Characteristics

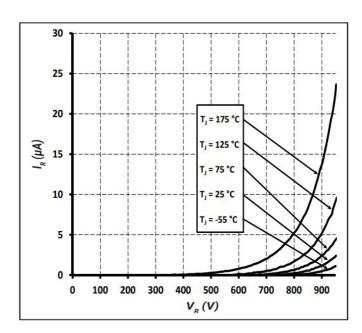
Parameter	Symbol	Тур.	Max.	Unit	Test Conditions	Notes
5 IV II	.,	1.5	1.8		I _F = 16 A, T _j = 25 °C	F. 1
Forward Voltage	V _F	2.0	2.4	V	I _F = 16 A, T _j = 175 °C	Fig. 1
D 6 1	18.5 95		$V_R = 650 \text{ V}, T_j = 25 \text{ °C}$	E. 0		
Reverse Current	I _R	38.5	378	μΑ	$V_R = 650 \text{ V}, T_j = 175 ^{\circ}\text{C}$	Fig. 2
Total Capacitive Charge	Q _c	44.5		nC	$V_R = 400 \text{ V}, T_j = 25 \text{ °C}$	Fig. 5
		877.5			$V_R = 0 \text{ V}, T_j = 25 \text{ °C}, f = 1 \text{ MHz}$	
Total Capacitance	c	80		pF	$V_R = 200 \text{ V}, T_j = 25 \text{ °C}, f = 1 \text{ MHz}$	Fig. 6
		64			$V_R = 400 \text{ V}, T_j = 25 \text{ °C}, f = 1 \text{ MHz}$	
Capacitance Stored Energy	E _c	6.2		μJ	V _R = 400 V	Fig. 7

Notes:

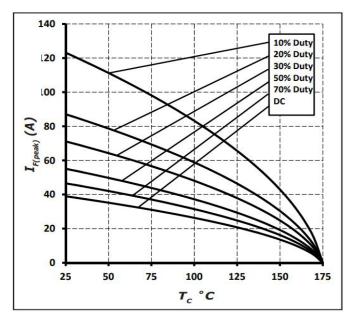
SiC Schottky Diodes are majority carrier devices, so there is no reverse recovery charge.

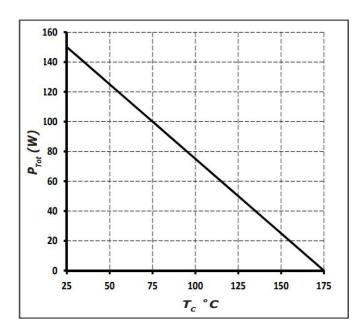

Thermal & Mechanical Characteristics

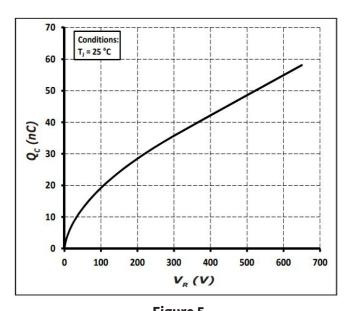
Parameter	Symbol	Value	Unit	Notes
Thermal Resistance, Junction to Case (Typical)	$R_{\theta,\text{JC}(\text{TYP})}$	1	°C/W	
Junction Temperature	T _j	-55 to +175		
Case & Storage Temperature	T _c	-55 to +175	°C	
		1	Nm	M3 Screw
TO-220 Mounting Torque	-	8.8	lbf-in	6-32 Screw

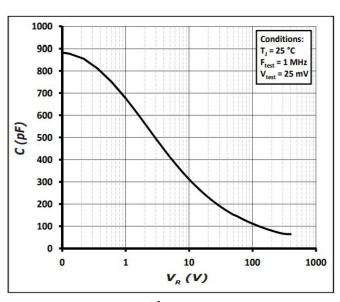

Electrostatic Discharge (ESD) Classifications

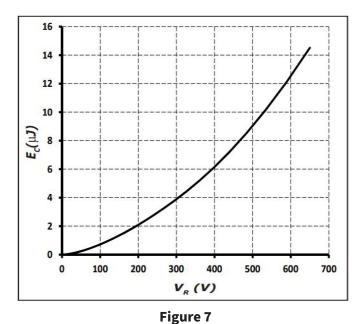
Parameter	Symbol	Notes
Human Body Model	НВМ	Class 3B (≥ 8000 V)
Charge Device Model	CDM	Class C3 (≥ 1000 V)

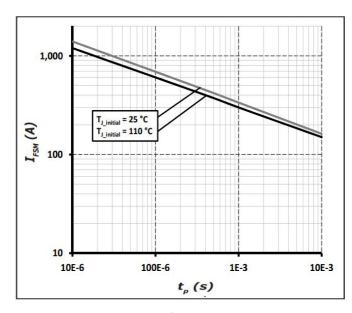

Typical Performance

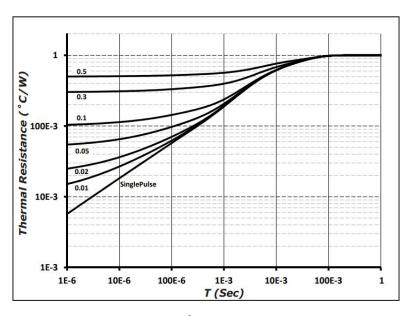

Figure 1Forward Characteristics


Figure 2Reverse Characteristics


Figure 3Current Derating


Figure 4Power Derating

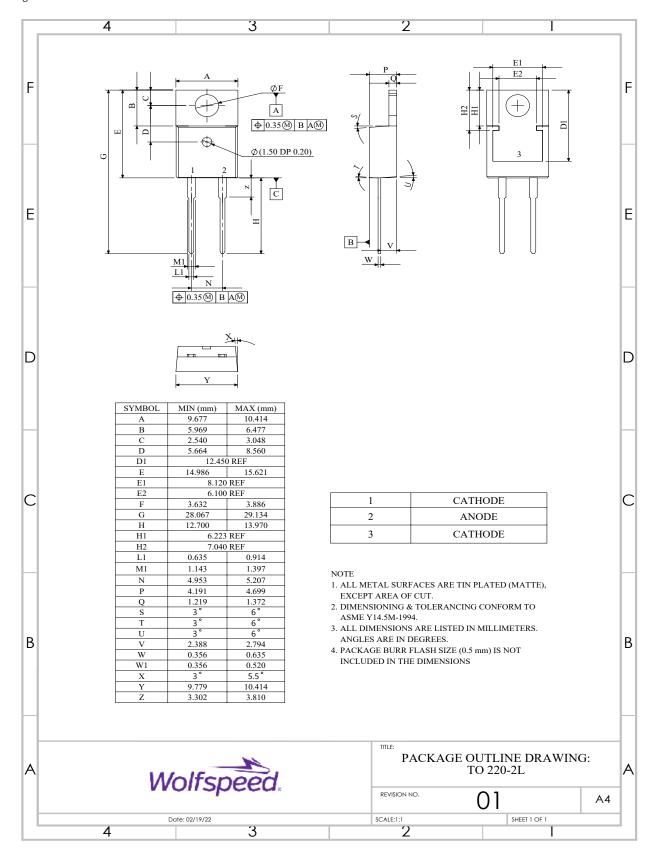

Figure 5Total Capacitance vs. Reverse Voltage


Figure 6Capacitace vs. Reverse Voltage

Capacitance Stored Energy

Figure 8Non-Repetitive Peak Forward Surge Current versus Pulse Duration (sinusoidal waveform)

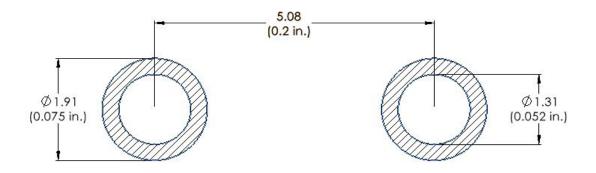
Figure 9Transient Thermal Impedance


Diode Model

$$Vf_T = V_T + If * R_T$$

 $V_T = 0.94 + (T_J * -1.0*10^{-3})$
 $R_T = 0.027 + (T_J * 2.8*10^{-4})$

Note: T_j = Diode Junction Temperature In Degrees Celsius, valid from 25°C to 175°C


Package Dimensions & Pin-Out

Package: TO-220-2

Recommended Solder Pad Layout

Primary dimensions shown in mm.

Product Ordering Information

Order Number	Packing Type	
C3D16065A	Tube	

Revision History

Document Version	Date of Release	Description of Changes
0	September-2016	Initial Release
1	March-2023	Update Package Drawing Update Landing Pad

Notes & Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, air craft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed. com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.